Bioindication of environmental contamination of the MONDI Ružomberok surrounding area based on bryophytes

M. VIGAŠ, R. ŠOLTÉS

Institute of High Mountain Biolology, Tatranská Javorina 7, SK-059 56 Slovak Republic, e-mail: matusAvigas@gmail.com; rudolf.soltes@uniza.sk

Abstract. The present work provides the estimation of environmental load in the neighbourhoods of industrial complex MONDI SCP Ružomberok, northern Slovakia, based on bryophyte bioindication. The samples were collected within three protected areas: Low Tatra National park, Veľká Fatra Mts National park and National Nature Reserve Chočské vrchy Mts, while control sampling near Hrboltová settlement in Liptov Basin was performed. Imissions accumulated during winter in the snow after its melting did not affect significantly the concentrations of imissions in the tissues of bioindicator. A significant correlation was found with altitude in copper, molybdenum and lead. Contamination by Cu, Mn, Mo, Zn, Cr, Rb, and Ba caused by MONDI SCP the authors do not suppose. Emission sources were located NW, i. e. Krakow region, Silesia, Orava or Ostrava region, only in the case of sulphur is a local source probable.

 $Key\ words.$ XRF spectrometry, bryophytes, bioindication, air contamination, pulp mill,

Introduction

In 1980, throughout the Liptov and Spiš region, there was the production of a total 5 of 5733 tonnes of solid emissions and 72427 tonnes of gaseous emissions, while the largest producer of sulphur dioxide was Mondi SCP Ružomberok. As to solid emissions, compounds of Fe, Mn, Mo and Cr were produced by OPZ Istebné (Rak *et al.* 1982). The biggest emmissions producers were sites situated NW at a distance of 150-200 km, i. e. Ostrava region, Kraków region and Silesia region (Rak *et al.* 1982).

Mondi SCP Ružomberok have several projects aimed at the improvement of emissions. Based on BAT (Best Available Techniques) the environmental impact was distinctly reduced by removal of conventional scouring and bleaching processes and its replacement by ozone bleaching. Therefore the amount of arising AOH (Absorbable Organic Halogens) has been reduced by 58% and COD (Chemical Oxygen Demand) by 69%. Within the company, the project IMPULSE has been put into practice, to increase the quality of the output of pulp and paper, in connection with the environmental impact. Distinct improvements were seen in SOx emissions; they were reduced by 92% and in terms of TRS (Total Reduced Sulphur), emissions were reduced by 96% (Sotolová 2006). Such a condition has been achieved by the installation of a new recovery boiler (Sotolová 2006). The shift in the manufacturing process was also due to the introduction of the ANDRITZ automation (SPECTRUM No.21/1-2010 Magazine of pulp and paper).

Despite the measures referred above, according to the official measurements of the SHMÚ, the town Ružomberok is still highly polluted. This applies to the PM_{10} pollution (particles with a diameter of 10 micrometres or less) or PM_{25} (particles with a diameter of 2.5 micrometres or less). In 2011, the daily limit value for PM_{10} at the station Ružomberok - Riadok was exceeded 131 times, this is the absolute maximum in SR. At the same time, this station also showed the highest average annual concentration of dust particles (50.6 µg m⁻³).

The idea of bryophyte utilisation for bioindication arose in the seventies (Clymo 1963, Rühling and Tyler 1970). In terms of nutrition, bryophytes are completely independent from the substrate, bryophytes receive the majority of nutrients from precipitation or from dry deposition (Ratcliffe 1975, Burton 1990 and others). The high cation exchange capacity, lacking cuticle and simple thalli organisation make the bryophytes unable to avoid the heavy metal accumulation from deposition (Tyler 1990).

Bioindication based on bryophytes is a simple method, often used in Europe, as well as in the U.S.A., usually for the monitoring of ecosystems (Sumerling 1984; Zoltai 1988), or to identify the correlation between altitude and metal deposition (Zechmeister 1994).

In Slovakia, Šoltés (1992) assessed the results of chemical analysis of 267 bryophyte samples collected on the territory of the High Tatra. This author detected several trends, the most significant one was the correlation between the concentration of lead and the altitude. Šoltés (1996) analysed the relationship of the outbreak of bark beetle to heavy metal deposition. This author found out, that the centres of insect gradation correlate with the territories of maximum Cd and Cr deposition. The same author (Šoltés 1998), focused attention to the correlation of the accumulated elements with the altitude. A significant correlation was confirmed in the case of lead. **26** M.Vigaš & R. Šoltés

Maňkovská (1997) founded in Slovakia 78 permanent plots with Pleurozium schreberi, Hylocomium splendens and Dicranum scoparium as bioindicators. The results have been compared with levels in 1991/1995. The contents of Cu, Fe and Ni has increased, while contents of Cd, Pb, and Zn have decreased. Maňkovská et al. (2003) analysed 831 samples of Pleurozium schreberi, Scleropodium purum, Hypnum cupressiforme, Hylocomium splendens, Polytrichum formosum and Dicranum scoparium. The method allowed the identification of the industrially mostly affected territories. Maňkovská et al. (2008) used the mosses Pleurozium schreberi, Hylocomium splendens and Dicranum scoparium to compare the level of contamination in Slovakia with that in Norway. In Slovakia a much higher contamination was showed, in particular by Hg, Cu, Pb and Cr.

Šoltés and Gregušková (2012) used the moss *Pleurozium schreberi* as a bioindicator. They identified the level of deposition in three different facing valleys, and found an influence of Silesian and Polish metallurgy. Šoltés and Gregušková (2013) studied the distribution of accumulated elements in the thallus of the moss *Polytrichum commune*, comparing the one-year segments with more - year segments. It turned out, that a number of elements are preferentially accumulated in the capsula - Zn, S, Cr, Mn, Mo, Ca, Cu. Lead favours gametophyte, while K and Sr prefer sporophyte. Fe is significantly accumulated in more year segments. The following goals have been addressed in this paper:

- 1. to estimate the environmental load on the territory,
- 2. to reveal the source of environmental contamination,
- 3. to create the base for the long-term ecosystem monitoring in the vicinity of MONDI Ružomberok,
- to determine the correlations in the accumulation of various elements with altitude.

Material and Methods

Sampling

As bioindicators, we have used the moss species *Pleurozium schreberi* on acide bedrock and *Homalothecium philippeanum* on limestone. *Pleurozium schreberi* has been used as a bioindicator by other researchers (Šoltés 1992, Maňkovská 1997, Maňkovská et al 2003, 2008, Šoltés and Gregušková 2012) also. The sampling area consists of regions close to the source of pollution (Mondi Ružomberok, up to 10 km) to the protected areas (National Park Nízke Tatry Mts, National Park Veľká Fatra Mts and National Nature Reserve Chočské vrchy Mts). The main sampling has been carried out on August - September, 2012 and 2013, with a supplementary (control) sampling on February, 2014.

The samples were collected within three protected areas (Fig. 1): Low Tatra National park (14 samples, altitude 653 - 1203 m a.s.l.), Veľká Fatra Mts. National park (11 samples, altitude 657 - 1333 m a.s.l.), National Nature Reserve Chočské vrchy Mts. (13 samples, altitude 714 - 1400 m a.s.l.), Mních Hill (20 samples, altitude 520 - 670 m a.s.l.) and two control samples collected in Liptov Basin, near Hrboltová settlement.

Bedrock consists mostly of granite, but samples no. 10 and 20 were collected on Mních, where the bedrock is formed by limestone. *Pleurozium schreberi* is an acidophilous species. If occuring on limestone, the geological substratum is isolated by a thick layer of acide raw humus. On limestone areas, we have used as bioindicátor *Homalothecium philippeanum*.

The samples were collected in fairly open stands with a distance of 5 m to the nearest tree. After the return to the laboratory, the plant samples were dried at 70° C for two days. After drying, the plant material was grinded by the mill into fine powder. The mill was made of hardened steel to minimize, if not eliminate the iron contamination. The samples placed in plastic sleeves are stored

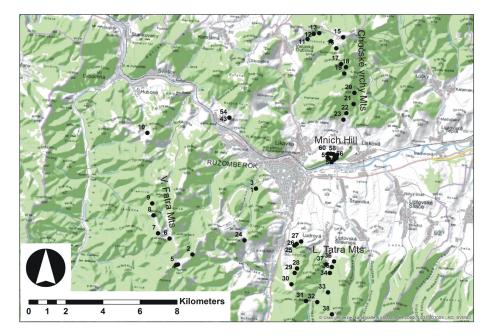


Fig. 1. Investigated area, sampling sites.

Bryoindication of contamination, Ružomberok MONDI in the Institute of High Mountain Biology in Tatranská Javorina, Slovakia. The geographical coordinates were recorded in the system WGS 84, with the help of GPS Garmin Oregon 450 device.

Instrumental analysis and statistics

X-ray fluorescence spectrometry has been used (Stephens and Calder 2004) using the hand-held XRF spectrometer DELTA CLASSIC (USA). Nonmetals (S, Cl) and metals (K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, As, Rb, Sr, Zr, Mo, Ba, Pb) have been determined.

For statistical analysis, the CANOCO 4.5 for Windows package (Ter Braak and Šmilauer 2002) was used. To analyse the relation of environmental variables (element concentrations) and analysed samples, we had only single data set of variables. Since the length of the first gradient in the log report was < 0.6, we used the linear method of ordination (principal component analysis, PCA). For ordination analysis, we used ordinal element concentration data without transformation. Statistical graphics system STATISTICA (Release 7) have been used for the analysis of variance

(ANOVA). Except for individual differentiation, the samples were sorted into groups according to location (Low Tatra Mts, High Fatra Mts, Chočské vrchy Mts Hills) and according to altitude. The differences between ecological groups were tested with one-way analysis of variance (ANOVA) of the component scores.

Results

Instrumental analysis results

Concentrations of identified elements in sampling sites are reported in the Table 1.

The first axis explaines 75.4% of the variance, this axis highly positively correlates with sulphur and calcium, at a lesser extent with Pb, Fe, Ti, Sr. The second axis explains 20.4% of variance. This axis positively correlates with K, Mo, at a lesser extent with Cl, Cr, Ba, Mn, Rb, Zn and Cu. The indirect linear analysis (PCA) ordination diagram of 58 sites shows the major correlations in the direction of the first axis, Eigenvalue is 0.754 while in the direction of the second axis Eigenvalue is 0.204 (Fig.2).

Sam- pling site						Е	lement	s, ppm							
	S	Cl	К	Ca	Ti	Cr	Mn	Fe	Cu	Zn	Rb	Sr	Мо	Ba	Pb
1	2205	1424	36788	26290	211	73	873	3682	242	164	39	10	14	129	28
2	824	0	16785	15976	158	57	961	2429	362	114	24	11	9	100	33
3	1629	0	32379	28608	254	195	2093	5684	142	126	21	10	18	230	30
4	1105	0	11951	13538	293	31	1611	5476	34	358	23	13	6	142	61
5	1122	0	22354	9792	660	77	1826	6351	191	151	43	4.1	10	103	33
6	1361	1521	22329	13070	202	54	1213	3556	0	211	29	13	11	65	39
7	2296	4072	51324	33263	306	73	491	4069	251	214	57	8	15	129	36
8	768	1423	15005	16181	142	31	282	3691	117	197	23	7.9	11	100	44
9	869	0	17826	11361	93	21	273	1741	37	133	4.1	6.1	4	55	23
10	1102	3791	15872	23029	154	32	340	1738	45	143	39	4.4	4.2	64	22
11	973	815	14326	13441	0	23	273	1340	78	188	21	22.4	6.4	48	26
12	845	0	11344	14373	141	29	344	3058	26	177	34	41	6	56	34
13	806	683	14276	22079	152	37	360	2961	93	185	26	22.4	9	64	29
14	1061	0	13879	24344	135	32	375	2906	57	178	25	21	10	70	34
15	502	834	8484	9770	81	17	201	1660	61	123	33	17.5	6.4	0	35
16	859	0	13795	8700	79	25	586	2254	31	171	28	7.7	7	67	33
17	836	553	12594	11412	70	20	1456	1654	1514	144	54	22.7	7.3	44	26
18	1160	771	18346	12777	183	26	318	3069	37	178	29	13.3	10	46	33
19	1452	1244	27399	22546	226	47	1152	4115	43	163	40	26	11	91	24
20	1526	0	8812	21456	160	23	505	3410	0	233	22	32	9	75	27
21	558	1735	17852	12519	81	22	886	1352	26	84	20	25	8	55	22
22	1761	0	23680	23644	193	44	349	3358	42	199	20	16	8	100	23
23	734	456	6648	12168	140	6	390	2088	15	131	15	13	6	35	25
24	739	968	18947	19289	100	17	296	1806	48	222	25	29	8.7	0	16
25	571	523	9842	15019	70	16	126	1506	0	77	21	5.8	6.9	0	25
26	639	1347	9051	17900	0	23	149	1677	0	91	20	10.3	8	55	22
27	1100	848	10397	23295	132	19	208	2733	91	155	25	19.5	9	50	24
28	789	1136	9509	11612	170	22	154	2539	55	130	37	3.7	5.9	36	26
29	984	1288	13786	13475	0	25	236	2392	404	106	43	27	9	67	23

27

continued...

28					
πÆ	τ7	÷	\sim	~	2

M.Vigaš & R. Šoltés

30	1018	989	9522	16710	164	26	201	2735	35	193	38	34	8,3	53	24
31	1153	0	13448	15621	126	35	284	2854	33	183	19	29	7	97	38
32	0	3385	31590	34017	132	115	858	1789	57	183	30	38	15	302	32
33	772	530	11796	10789	81	23	255	1731	0	105	18	34	9	42	21
34	725	0	13824	11272	116	32	290	2119	50	118	32	11.1	9	54	24
35	599	0	10029	11100	90	15	380	1194	24	88	23	8.5	6.8	32	17
36	482	912	8538	7918	59	0	120	925	0	101	19	8.4	6.1	0	20
37	499	477	8680	11177	62	16	111	1167	20	65	20	4.5	1.8	0	17
38	838	1443	18238	9937	63	18	736	1685	0	144	54	16.1	12	53	28
39	4499	0	8340	55529	341	42	465	13055	21	122	30	28	6.6	76	35
40	4939	0	16715	28313	325	44	272	5708	23	120	34	15	5.3	112	28
41	3162	0	11738	38259	595	24	308	6536	25	116	35	55	5.8	82	23
42	3128	609	23873	23049	1284	27	246	5290	0	102	47	36	5.3	159	26
43	2100	0	14981	34470	167	44	309	2978	0	60	27	17	8	79	25
44	3019	0	7808	42312	1214	45	491	13563	33	179	32.9	57	0	130	53
45	2716	0	7740	61481	692	16	250	7634	24	129	23.7	78	4.2	66	39
46	2614	518	6736	32338	454	16	202	6144	13	225	22.8	29.1	4.2	30	27
47	2238	0	6245	58298	566	18	230	7878	23	139	29	30	7.8	50	32
48	2762	0	6386	90673	489	21	195	6772	20	102	21	43	4	56	21
49	3229	0	5514	41404	165	16	164	2822	0	76	17.3	32	5.1	0	22
50	4200	680	7511	52207	968	44	647	18162	47	222	32.2	72	4.4	127	57
51	2272	0	5811	29362	695	50	337	11786	85	195	27.2	35	4.2	96	37
52	2845	565	8049	43886	808	46	361	13293	95	190	24	35	7.5	95	38
53	1618	555	6335	22260	653	38	260	9133	28	102	29.7	29.3	0	60	26
54	4785	1098	15255	53116	1294	67	359	14038	57	175	36	23	8	112	31
55	0	448	8286	31047	1406	49	323	13617	25	150	37	40	0	125	31
56	2149	607	15643	19054	2648	82	650	19843	15	83	62	61	0	268	31
57	1801	546	10093	16677	1044	46	285	10640	15	120	32	25.9	2.9	106	18
58	3359	501	6943	30516	528	33	219	6042	15	129	20.2	14.7	3.6	52	43
59	2894	947	5248	41736	624	48	285	7628	38	151	23	21.6	4.6	77	41
60	3697	1262	7183	38036	349	23	275	5834	10	216	22	17.2	5.4	28	31

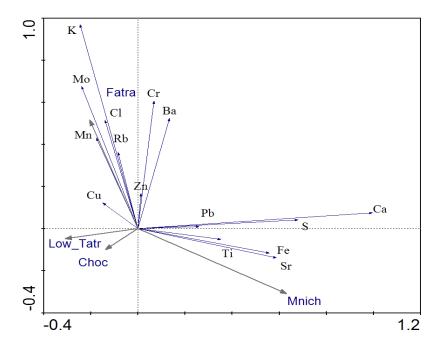


Fig. 2. PCA, ordination diagram.

Bryoindication of contamination, Ružomberok MONDI The effect of winter inversions on the accumulation

Five samples were taken during the winter period (February, 2014) to evaluate the impact of winter inversions on the accumulation of imission. The results of the analysis are shown in Table 2, Columns 1-5.

For the assessment of the impact of deposition in the winter period, we have used a canonical analysis. Matrix consisted of a group of variables (results of the analyses) acquired before the winter period in 2013 and from a group of variables (results of the analyses) acquired immediately after snow melting on late January or early February 2014 (Table 2). Samples for analysis were collected in approximately the same locations and about adequate altitude. Assumption for canonical analysis is a normally distribution of the input variables. Descriptive statistics have confirmed that not all variables met the condition for a normal distribution: there are ordinal differences in the concentrations of the elements. For this reason, the data were transformed logarithmically. The results of canonical analysis: Canonical R - 0,9991107 and Chi square - 231.2.

The value of the canonical R close to "1" shows that between the groups is a significant relationship. In other words, imissions accumulated during winter in the snow; after melting, the concentrations

Elements					Varia	bles				
	1	2	3	4	5	6	7	8	9	10
S	1294	886	647	888	760	2205	824	734	739	806
Cl	1523	2119	1903	2018	1064	1424	0	456	968	683
K	17784	20211	11235	10813	15310	36788	16785	6648	18947	14276
Ca	26482	15311	10627	16538	12032	26290	15976	12168	19289	22079
Ti	0	159	115	214	93	211	158	140	100	152
Cr	46	26	20	27	16	73	57	6	17	37
Mn	276	265	186	718	201	873	961	390	296	360
Fe	2707	2445	2172	4403	1852	3682	2429	2088	1806	2961
Cu	42	0	39	24	24	242	362	15	48	93
Zn	170	127	155	155	140	164	114	131	222	185
Rb	48	22	26	34	21	39	24	15	25	26
Sr	6	10	12	15	17	10	11	13	29	22
Мо	9	5	9	6	8	14	9	6	8	9
Ва	62	66	0	93	0	129	100	35	0	64
Pb	15	31	25	33	19	28	33	25	16	29

Table 2. Matrix of variables for cannonical analysis. The first group of variables (1-5) is the sampling in spring time 2014 (January-February), the second group (6-10) is sampling in 2013.

	Root 1	Root 2	Root 3	Root 4	Root 5
Sample 1	-0.00110	-0.09349	0.7526	-1.17571	-1.47092
Sample 2	0.25339	-0.23778	1.4495	2.85513	-2.02272
Sample 3	0.59752	-0.33438	11.1529	1.63150	2.62288
Sample 4	-0.36811	-2.06103	-1.8000	-1.95489	3.10529
Sample 5	-1.47659	2.53620	-11.2999	-1.31923	-2.47835

Table 3. Cannonical factor load for the first group of variables (sampling in springtime 2014).

	Root 1	Root 2	Root 3	Root 4	Root 5
Sample 6	-0.150918	-0.29429	1.86132	-1.35742	5.33958
Sample 7	-0.001679	0.36225	-1.41714	-0.53988	0.39904
Sample 8	-0.205588	-1.27506	-1.68654	3.43509	2.77632
Sample 9	-0.813062	2.53457	0.08336	0.15248	0.86204
Sample 10	0.151631	-1.35837	0.77905	-1.87899	-9.11984

 Table 4. Cannonical factor load for the second group of variables (sampling in 2013).

29

30 M.Vigaš & R. Šoltés of these substances in the tissues of bioindicator were not affected significantly. The impact of winter inversion proved insignificant. Canonical factor loads for the first group of variables is shown in Table 3, and for the second group of variables in Table 4. Extreme factor load, at the root 1, in the first group of variables (Sample 3, Table 3) should be probably attributed to divergent sulphur and calcium concentrations.

Correlation of elements with altitude

To find out the relation of element concentrations with altitude, a correlation analysis was used. A positive correlation with altitude was found in Cl, K, Cr, Mn, Cu, Zn, Mo, Pb and others (Table 5). A significant correlation with altitude was found in copper (p = 0.0070), molybdenum (p = 0.003) and lead (p = 0.043) (ANOVA). A negative correla-

tion with altitude was reported for S, Ca, Ti, Fe, Sr.

Contamination in the investigated area

Contamination of the Veľká Fatra Mts is in accordance with the prevailing airflow (W, NW), but Mních Hill is highly contaminated as well (Fig. 2). For an explanation of the flux of contaminants throughout the investigated area, a key aspect is a comparison of levels of contamination in Northern and Southern slopes of Mních Hill (Table 6, 7).

The ordination diagram (Fig. 2) and box diagrams (Fig. 3, 4) suggest particularly a contamination of Veľká Fatra Mts. and Mních Hill. Veľká Fatra Mts. are contaminated in particular with Cu, Mn, Mo, Rb, Zn, Cu, Ba, K and Cl. Mních Hill is contaminated with Pb, Ca, Ti, Fe, Sr and S. The Low Tatra Mts. and Chočské vrchy Mts. (Fig. 3, 4) are the least contaminated.

	S	Cl	К	Ca	Ti	Cr	Mn	Fe	Cu	Zn	Rb	Sr	Мо	Ва	Pb
r	-0.45	0.19	0.42	-0.48	-0.43	0.16	0.53	-0.43	*0.33	0.30	0.16	-0.45	*0.56	0.03	*0.19

Table 5. Correlation between altitude and element concentrations, correlation coeficients. *Indicates significance.

201	2																	
	S	Cl	К	Ca	Ti	Cr	Mn	Fe	Cu	Zn	As	Rb	Sr	Zr	Мо	Ва	Pb	Slope
1	4499	0	8340	55529	341	42	465	13055	21	122	0	30	28	14.6	6.6	76	35	S
2	4939	0	16715	28313	325	44	272	5708	23	120	0	34	15	7.1	5.3	112	28	S
3	3162	0	11738	38259	595	24	308	6536	25	116	0	35	55	28.2	5.8	82	23	S
4	3128	609	23873	23049	1284	27	246	5290	0	102	11	47	36	52	5.3	159	26	Ν
5	2100	0	14981	34470	167	44	309	2978	0	60	0	27	17	3.6	8	79	25	С
6	3019	0	7808	42312	1214	45	491	13563	33	179	13	32.9	57	105	0	130	53	S
7	2716	0	7740	61481	692	16	250	7634	24	129	10	23.7	78	39	4.2	66	39	S
8	2614	518	6736	32338	454	16	202	6144	13	225	0	22.8	29.1	21.2	4.2	30	27	Ν
9	2238	0	6245	58298	566	18	230	7878	23	139	0	29	30	23	7.8	50	32	Ν
10	2762	0	6386	90673	489	21	195	6772	20	102	15	21	43	20	4	56	21	Ν
11	3229	0	5514	41404	165	16	164	2822	0	76	0	17.3	32	4.8	5.1	0	22	Ν
201	3																	
1	4200	680	7511	52207	968	44	647	18162	47	222	27	32.2	72	48	4.4	127	57	S
2	2272	0	5811	29362	695	50	337	11786	85	195	11	27.2	35	50	4.2	96	37	S
3	2845	565	8049	43886	808	46	361	13293	95	190	23	24	35	19	7.5	95	38	S
4	1618	555	6335	22260	653	38	260	9133	28	102	7	29.7	29.3	33	0	60	26	Ν
5	4785	1098	15255	53116	1294	67	359	14038	57	175	0	36	23	32	8	112	31	С
6	0	448	8286	31047	1406	49	323	13617	25	150	9	37	40	92	0	125	31	S
7	2149	607	15643	19054	2648	82	650	19843	15	83	25	62	61	228	0	268	31	S
8	1801	546	10093	16677	1044	46	285	10640	15	120	6	32	25.9	65	2.9	106	18	Ν
9	3359	501	6943	30516	528	33	219	6042	15	129	0	20.2	14.7	15	3.6	52	43	Ν
10	2894	947	5248	41736	624	48	285	7628	38	151	8	23	21.6	22	4.6	77	41	Ν
11	3697	1262	7183	38036	349	23	275	5834	10	216	0	22	17.2	8	5.4	28	31	Ν

Table 6. Results of chemical analysis, Mních near Ružomberok, sampling in October 22, 2012 and October 28, 2013. S – South slope, N – North slope, C – control site.

Bryo indication of contamination, Ružomberok MONDI

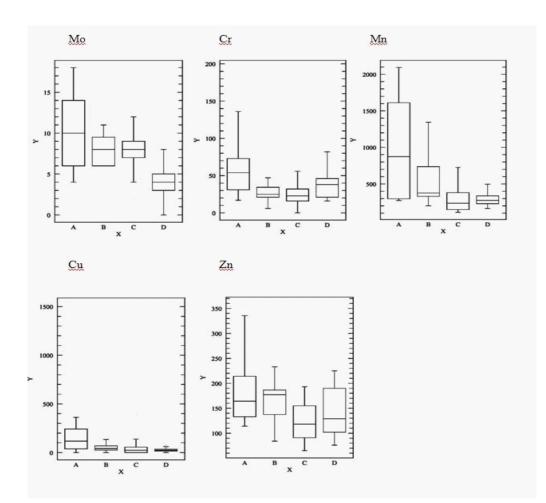
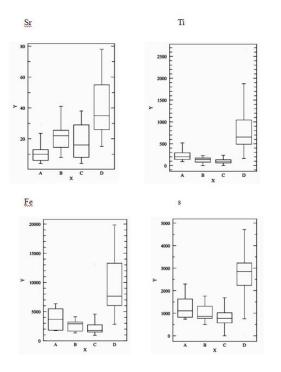



Fig. 3. Box diagrams. Elements contaminating predominantly V. Fatra Mts. A – V. Fatra Mts; B – Chočské vrchy Mts; C – Low Tatra Mts; D - Mních Hill.

Year	2012	2013
S	0.104	0.645
Cl	0.143	0.153
К	0.860	0.343
Ca	0.773	0.501
Ti	0.869	0.114
*Cr	0.049	0.083
*Mn	0.021	0.032
*Fe	0.097	0.003
*Cu	0.029	0.090
Zn	0.881	0.457
As	0.893	0.007
Rb	0.529	0.158
Sn	0.305	0.010
Zr	0.466	0.164
Mo	0.522	0.964
Ва	0.278	0.056
Pb	0.107	0.325

 $\label{eq:stable_stable_stable_stable_stable} \begin{array}{l} \mbox{Table 7. } Mnich, \ p \ values, \ N \ slope \ vs \ S \ slope, \ in \ 2012 \\ and \ 2013. \ ^*Indicates \ significance. \end{array}$

31

Discussion

32 *M.Vigaš& R. Šoltés*

The correlation of lead concentrations with altitude is commonly known, e. g. for a correlation of lead with altitude in the Alps, see Zechmeister (1994). In the Tatra Mts, this correlation has been recorded by Šoltés (1992, 1998) and by Šoltés and Gregušková (2012). Even if insignificant, this correlation has been confirmed in the Tian-Shan Mts (Ciriaková *et al.* 2011).

Comparison of contamination of Northern and Southern slopes of Mních Hill (Table 6) might indicate the direction of contamination. As can be seen from the results of analysis of samples collected in 2012 and 2013 (Table 6), nearly all the monitored elements have been approximately evenly distributed in the northern and southern slopes of the Mních Hill. Only Cu, Mn, Cr and Fe exhibits a significantly higher contamination of the southern slopes of the Mních Hill (Table 7). So, the direction of the imission spread is along the Liptov Basin, to the East, as the prevailing winds are West to the Northwest. The main imission sources were located NW, i. e. Krakow region, Katowice region, Silesia, Orava or Ostrava region (Rak et al., 1982), in accordance with Veľká Fatra Mts contamination. Veľká Fatra are situated upwind, which explains its high contamination. An explanation is required for the contamination of Mních Hill. According to official measurements of Slovak hydrometeorological institute (SHMÚ), the town Ružomberok is highly polluted by dust particles. In 2011, the daily limit value for PM_{10} , at the station Ružomberok-Riadok, was exceeded by 131 times, this is the absolute maximum in SR. Solid emissions may apply as the carrier component compounds of heavy metals (Fargašová 2009). We assume that these sources would contaminate the Mních Hill. Despite a reduction in sulphur content by 96% (Sotolová 2006), a local source is probable in the case of sulphur.

The Northwest direction of air flow is prevailing, but East flow is essential also. East flow has about 20% of all the winds (http://www.enviroportal.sk). In this direction, the main sources of pollutants were Chemosvit Svit (70 km) and Copper Smelter Krompachy (115 km). The plant Copper Smelter Krompachy is located in the Middle Scepusia region, which belong to the most affected territories within the Slovak Republik. Crucial is mercury content in soils, high concentrations were consequence of emission up to 4.6 tons of Hg per year (Fargašová 2009). In the investigated area, increased levels of mercury have not been recorded. During the last decades of the 20th century, Chemosvit Svit produced 3,415 tons of sulphur dioxide per year, 2,130 tons of carbon disulphide and 433 tons of hydrogen sulphide. Compounds of Fe, Mn, Mo and Cr were produced by Copper Smelter Krompachy (21,980 tons per year, Rak et al. 1982). Several authors have found that the emissions of metals in the ecosystem may persist in concentrations several thousand ppm (Hutchinson and Symington 1997), even long after the environmental contamination has stopped, according to Nriagu et al. (1998) well over 1,000 years. Effect of sulphur on ecosystems persists for a long time also. For example, the contamination with sulphur dioxide had devastated vegetation for miles around roasting bed near Sudbury (Ontario, Canada). The surface soils of the recovered forest

were strongly acidic (pH 3.89–4.2) yet in the last decade of the last century (Hutchinson and Symington 1997).

The Copper Smelter Krompachy, in 2000, instigated a modernisation of production methods. Since then, the plant constantly upgrading the technologies to minimize the impact on the environment. Chemosvit Svit halted the production method based on viscose, which released a large volume of sulphur compounds, and it is now involved in the production of flexible films intended for packaging.

Conclusions

- 1. The impact of the winter inversion proved insignificant. Imission accumulated during winter in the snow, after its melting, it did not affect significantly the concentrations of these substances in the tissues of the bioindicator.
- 2. Significant correlation with altitude was found in copper, molybdenum and lead. A negative correlation with altitude has been reported with S, Ca, Ti, Fe, Sr.
- Resources located NW in 40 140 km (Krakow region, Katowice region, Silesia region, Orava or Ostrava regions) are probably imission sources. Only in the case of sulphur, a local source is probable.
- V. Fatra Mts (Cu, Mn, Mo, Rb, Zn, Cu, Ba, K and Cl) and Mních Hill (Pb, Ca, Ti, Fe, Sr and S) are highly contaminated.

References

- Burton, M.G.S. 1990: Terrestrial and aquatic bryophytes as monitors of environmental contaminants in urban and industrial habitats. *Botanical Journal of the Linnean Society*, **104:** 267-280.
- Ciriaková, A., Šoltés, R., Lukáň, M. and Janiga, M. 2011: Lead concentrations in soils and plants of two altitudinal transects in the Eastern Kyrgysztan. *Oecologia Montana*, **20:** 19-26.
- Clymo, R. 1963: Ion exchange in Sphagnum and its relation to bog ecology. *Annals of Botany, New Series*, **27**: 309-324.
- Fargašová, A., 2009: Znečistenie kovmi na Slovensku. Univerzita Komenského, Prírodovedecká fakulta. Online: http://www.enviroedu.sk/database/environmentalne_problemy/znecistenie_kovmi_na_slovensku/ Enviro-edu_4013_Znecistenie_kovmi_na_Slovensku. pdf (retrieved 10.4.2013).
- Hutchinson, T.G. and Symington, M.S. 1997: Persistence of metal stress in a forested ecosystem near Sudbury, 66 years after closure of the O'Donnell roast bed. *Journal* of Geochemical Exploration, **58**: 323–330.
- Maňkovská, B. 1997: Deposition of heavy metals in Slovakia – assessment on the basis of moss and humus analyses. *Ekológia*, **16**: 433-442.
- Maňkovská, B., Florek, M., Frontasyeva, M.V., Ermakova, E., Oprea, K. and Pavlov, S.S. 2003: Atmospheric deposition of heavy metals in Slovakia studied by the moss biomonitoring technique, neutron activation and lame atomic absorption spectrometry. *Ecologia*, **22**: 157-162.
- Maňkovská, B., Oszlányi, J. and Barančok, P. 2008: Measurement of the atmosphere loading of the Slovak Carpathians using bryophyte technique. *Ekológia*, 27: 339-350.
- Rak, J., Závodský, D., Marečková, K. and Sladká, M. 1982: Znečistenie ovzdušia v oblasti Vysokých Tatier. Mscr. Záverečná správa SHMÚ, knižnica

Bryoindication of contamination, Ružomberok MONDI TANAPu, Tatranská Lomnica.

- Ratcliffe, J.M. 1975: An evaluation of the use of biological indicators in an atmospharic lead survey. *Atmospheric Environment*, **9**: 623-629.
- Rühling, Å. and Tyler, G. 1970: Sorption and retention of heavy metals in the wooland moss *Hylocomium splendens* (Hedw) Br. Et Sch., *Oikos*, **21**: 92-97.
- Sotolová, O. 2006: Environmental improvement as a result of BA Implementation in Pulp Paper Industry. Online: http://www.celso-foelkel.com.br/artigos/outros/48_ sd_bat%20 implementation.pdf (retrieved 17.5.2013).
- Stephens, W. E. and Calder, A. 2004: Analysis of nonorganic elements in plant foliage using polarised X-ray fluorescence spectrometry. Analytica Chimica Acta, 527: 89–96.
- SHMU 2011: Assessment of air quality in the Slovak Republic 2010: 29,32,35
- SHMU 2012: Assessment of air quality in the Slovak Republic 2011: 29, 71
- Smith, A.J.E. 1978: The Moss Flora of Britain and Ireland. Cambridge, pp. 706
- Sumerling, T.J. 1984: The use of mosses as indicators of airborne radionuclides near a major nuclear installation. Science of the Total Environment, 35: 251-265.
- Šoltés, R. 1992: Heavy metal concentrations in the mosses of the Tatra Mountains (Czecho-Slovakia): Multivariate analysis. *Oecologia Montana*, **1:** 31-36.

- Šoltés, R., 1996: Insect outbreak in relation to heavy metal deposition in the moss species. *Oecologia Montana*, 5: 93-96.
- Šoltés, R., 1998: Correlation between altitude and heavy metal deposition in the Tatra Mountains (Slovakia). *Biológia*, **53**: 85 - 90.
- Šoltés, R. and Gregušková, E. 2012: Bryomonitoring of element deposition in three walleys in the Tatra Mts (Slovakia) based on X-ray spektrometry. *Oecologia Montana*, **21:**15-20.
- Šoltés, R. and Gregušková, E. 2013: Accumulation Characteristics of Some Elements in the Moss *Polytrichum commune* (Bryophytes) Based on XRF Spectrometry. *Journal of Environmental Protection*, **4**: 522-528.
- Ter Braak and P. Šmilauer, P. 2002: CANOCO reference manual and CanoDraw for Windows user's guide. Software for canonical community ordination (version 4.5), Biometris, Wageningen & České Budějovice.
- Tyler, G. 1990: Bryophytes and heavy metals; a literature review. *Botanical Journal of the Linnean Society*, **104**: 231-253.
- Zechmeister, G.H. 1994: Correlation between altitude and heavy metal deposition in the Alps. *Environmental Pollution*, **89**: 73-80.
- Zoltai, S.C. 1988: Distribution of base metals in peat near a smelter at Flin Flon, Manitobe. *Water, Air and Soil Pollution*, **37**: 217-228

33